Ashley Waitt St. Georges Terrace, Herne Bay

Drainage Operation & Maintenance Requirements

Notice

This document and its contents have been prepared and intended solely for Ashley Waitt and for use in relation to St. Georges Terrace, Herne Bay.

MLM Consulting Engineers Limited assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

Document History

shley Waitt
Georges Terrace, Herne Bay
rainage Operation and Maintenance Requirements
.01045-MLM-ZZ-XX-RP-C-0001
3/6101045

Revision	Status	Description	Author	Checked/Approved	Date
00		First Issue	Dan Kent	Toby Crayden	20 December 2019
01		Revised based on updated site layout & CCTV Drainage Survey	Luke Bacon	Toby Crayden	17 January 2020

Contents

1	Drainage Operation
2	Maintenance Requirements 2
Append	ix A - Drainage Drawing

Appendix B - Drainage Calculations

1 Drainage Operation

The following sets out the requirements for the operation of the private foul and surface water drainage system for the new development at St. Georges Terrace, Herne Bay.

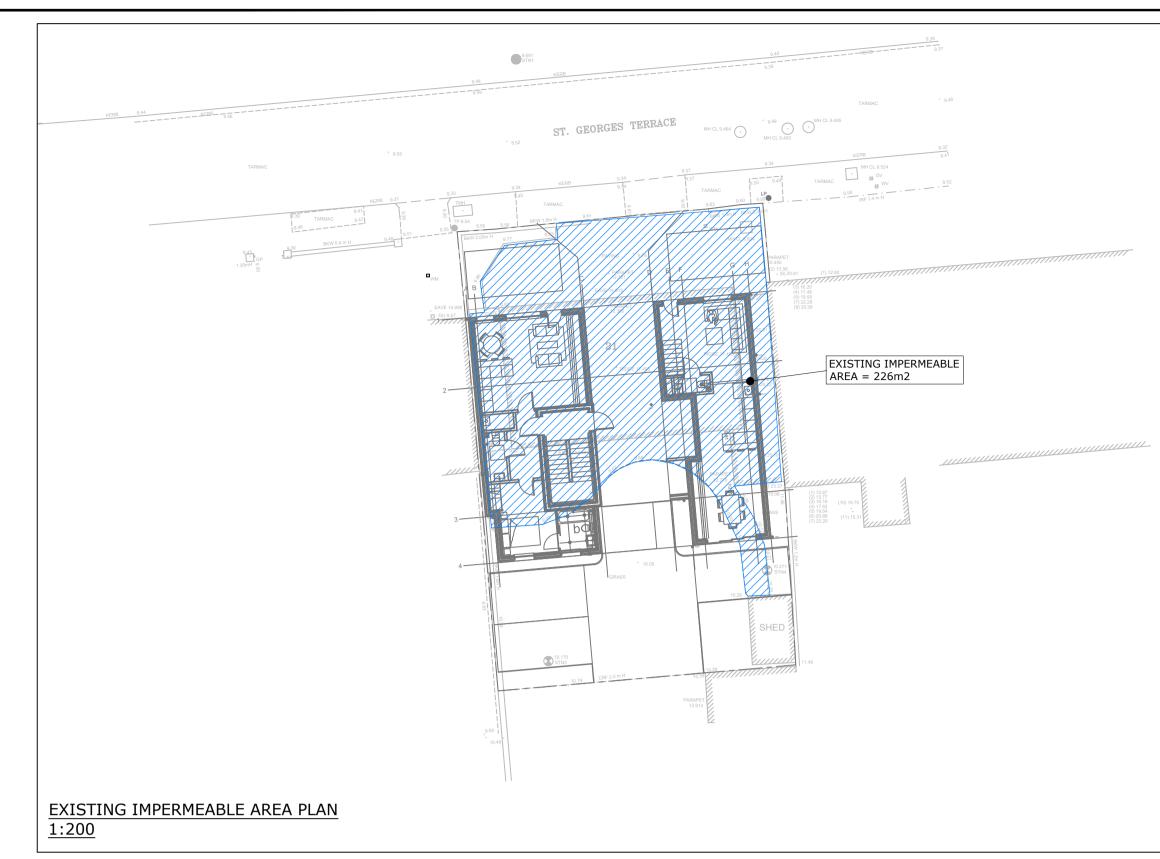
The private foul and surface water system includes all pipes, flow controls, attenuation etc. that collect, restrict, store and outfall private foul and surface water runoff from the building and external works. It does not include any adoptable surface water drainage, land drainage or surface water run-off from the adjacent areas.

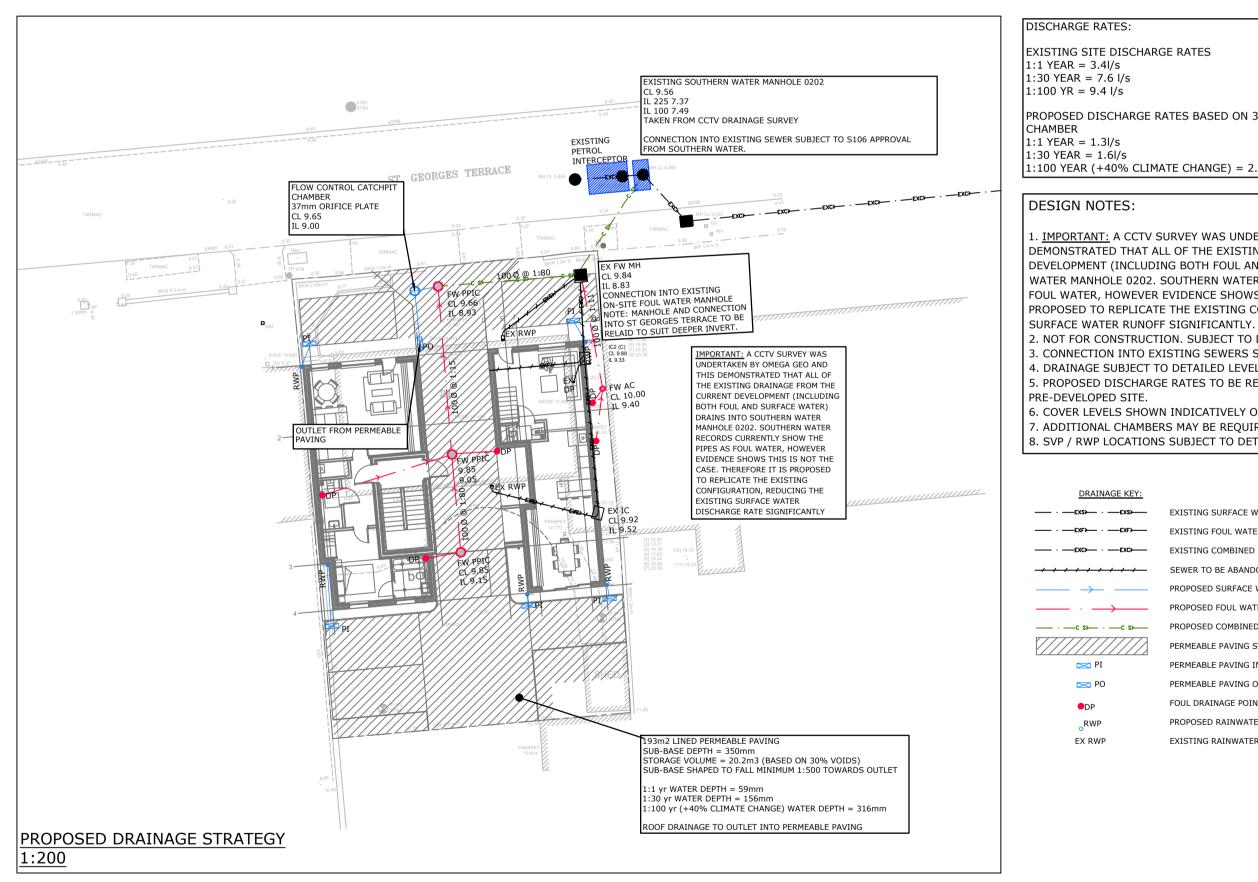
The surface water design incorporates permeable surfacing to drain external hardstanding areas with attenuation provided within the sub-base of the paving. The sub base will be lined with an impermeable membrane to ensure no discharge into the ground. Surface water from the roof areas will be collected by rainwater pipes and discharge directly into the permeable paving sub-base attenuation.

A flow control device will be installed (inside a catchpit chamber) and this will restrict the discharge to ensure that outflow rates from the proposed development are limited to a maximum of 2l/s (the lowest rate that can reasonably achieved without increasing the risk of pipe blockage), this is a significant reduction from the existing discharge rates on the site.

A CCTV survey has been undertaken by Omega Geo and this has indicated that both the existing surface and foul water network discharge into the adopted foul sewer along St. Georges Terrace. The adopted foul sewer is therefore a combined sewer, and subject to approval from Southern Water the controlled surface water outflow will be discharged via carrier pipes into the existing combined sewer network in St. Georges Terrace.

The foul water system is a gravity pipe network that collects foul drain points from within the building and discharges to the existing adopted combined water network in St Georges Terrace.


The drainage system is as indicated on MLM Drawing No. 6101045-MLM-ZZ-XX-DR-C-0001 and can be found in Appendix A.


2 Maintenance Requirements

To ensure the long term operation of the drainage system, it is essential that maintenance is carried out. Details for the long-term maintenance arrangements shall be in accordance with the requirements of the CIRIA report C753, the manufacturer's recommendations and as required based on operational needs, as summarised below. The recommended maintenance regime should be seen as the minimum recommended frequency and operational / site needs may dictate a greater frequency of inspection / action.

ltem	Description	Frequency
1	Flow control:	
	The orifice plate should be inspected every six months for correct operation, check for no visual damage etc. The sumps should be cleaned of silt and debris.	Every six months
2	Pipework/chambers in general:	
	General foul and surface water pipework and chambers etc should be jetted clean and CCTV'd at 5 year intervals and any recommendations on the CCTV footage / report actioned.	5 years
3	Permeable Paving:	
	Brushing and vacuuming of surfacing	Annually
	Removal of weeds	As required
	Remedial work to any depressions, rutting and cracking considered to be detrimental to the structural performance or a	As required
	hazard to users	Every 10 to 15 years or as required (if performance is reduced due to
	Rehabilitation of surface and upper substructure by remedial sweeping	' significant clogging)

Appendix A - Drainage Drawing

DRAINAGE NOTES

- 1. ALL PRIVATE DRAINAGE WORKS SHALL BE IN ACCORDANCE WITH 'THE BUILDING REGULATIONS APPROVED DOCUMENT H' AND BRITISH STANDARD EN 752.
- 2. PRIOR TO COMMENCEMENT OF THE WORKS THE CONTRACTOR SHALL LIAISE WITH ALL RELEVANT AUTHORITIES TO OBTAIN THEIR REQUIREMENTS AND TO OBTAIN APPROVAL FOR HIS METHOD OF MATERIALS.
- 3. REFER TO SITE SURVEY FOR DETAILS OF EXISTING SITE CONDITIONS AND BENCH MARKS.
- PRIOR TO COMMENCEMENT OF THE WORKS THE CONTRACTOR SHALL LIAISE WITH ALL RELEVANT AUTHORITIES TO LOCATE, PROTECT AND WHERE NECESSARY DIVERT ALL EXISTING SERVICES AFFECTED BY THE WORKS.
- 5. ALL EXCAVATIONS SHALL BE KEPT FREE OF STANDING WATER.
- 6. THE CONTRACTOR SHALL ENSURE THE STABILITY OF ALL EXCAVATIONS IS MAINTAINED AT ALL TIMES.
- 7. ALL WORKS IN, OR ADJACENT TO, THE PUBLIC HIGHWAY SHALL BE IN 11. THE CONSTRUCTION OF ALL EXISTING CHAMBERS, GULLIES ETC. AND ACCORDANCE WITH THE REQUIREMENTS OF THE HIGHWAY AUTHORITY. THE CONTRACTOR SHALL OBTAIN ALL NECESSARY LICENSES REQUIRED TO CARRY OUT THE WORKS WITHIN THE PUBLIC HIGHWAY.
- WORKING AND WHERE APPROPRIATE HIS INTENDED CHOICE OF 8. ALL WORKS TO NEW OR EXISTING PUBLIC SEWERS SHALL BE TO THE APPROVAL OF THE WATER AUTHORITY AND IN ACCORDANCE WITH 'SEWERS FOR ADOPTION'-LATEST EDITION.
 - 9. PRIOR TO COMMENCEMENT OF THE WORKS ALL DRAINAGE OUTFALL VEH POINTS, WHETHER EXISTING SEWER, DRAIN OR WATERCOURSE, SHALL BE VERIFIED ON SITE BY THE CONTRACTOR. IF THE OUTFALL POINT IS FOUND TO BE HIGHER OR SIGNIFICANTLY LOWER THAN TRA SHOWN ON THE DRAWINGS THEN THE CONTRACT ADMINISTRATOR SHALL BE NOTIFIED IMMEDIATELY. (SIGNIFICANT REDESIGN OF DRAINAGE AND LEVELS MAY BE NECESSARY). PRIOR TO COMMENCEMENT OF CONSTRUCTION ON-SITE THE CONTRACTOR SHALL INSTALL ALL OFF-SITE DRAINAGE CONNECTIONS, OR SATISFY HIMSELF THAT THERE ARE NO OBSTRUCTIONS OR OTHER REASONS WHY, THE DRAIN CONNECTIONS CAN NOT BE MADE.
 - 10. ALL COVER LEVELS SHOWN ON THIS DRAWING ARE APPROXIMATE. EXACT LEVELS OF NEW COVERS AND FRAMES TO BE DETERMINED ON SITE TO MATCH LEVEL AND PROFILE OF FINISHED SURFACE.

- THEIR COVERS, GRATINGS AND FRAMES TO BE IMPROVED, REPAIRED OR REPLACED AS NECESSARY TO SUIT THEIR LOCATION WITHIN THE FINISHED DEVELOPMENT
- 12. ALL COVERS, GRATINGS AND FRAMES TO CHAMBERS, GULLIES, CHANNELS ETC. SHALL BE OF THE CORRECT LOAD CLASS TO SUIT THEIR LOCATION.

- LOAD CLASS A15	PEDESTRIAN	AF	REAS
HICLES)			
- LOAD CLASS B125	PRIVATE DRIV	/ES	5
- LOAD CLASS C250	BASEMENTS	/	PAR
AFFICKED ROADS.			

- LOAD CLASS D400 MAIN ROADS

- GRATINGS IN PEDESTRIAN AREAS TO BE DESIGNED FOR PEDESTRIAN USE.
- 13. ALL EXISTING CHAMBERS, GULLIES CHANNELS, PIPES AND OTHER DRAINAGE APPARATUS SHALL BE PROTECTED FROM DAMAGE DURING THE WORKS. THE CONTRACTOR SHALL TAKE ALL NECESSARY MEASURES TO ENSURE THAT NO MATERIAL ENTERS THE DRAINS (OTHER THAN THAT WHICH THEY ARE DESIGNED TO CARRY).

PRINT ACCURACY INDICATOR 50mm

PROPOSED IMPERMEABLE AREA = 367m2

PROPOSED IMPERMEABLE AREA PLAN 1:200

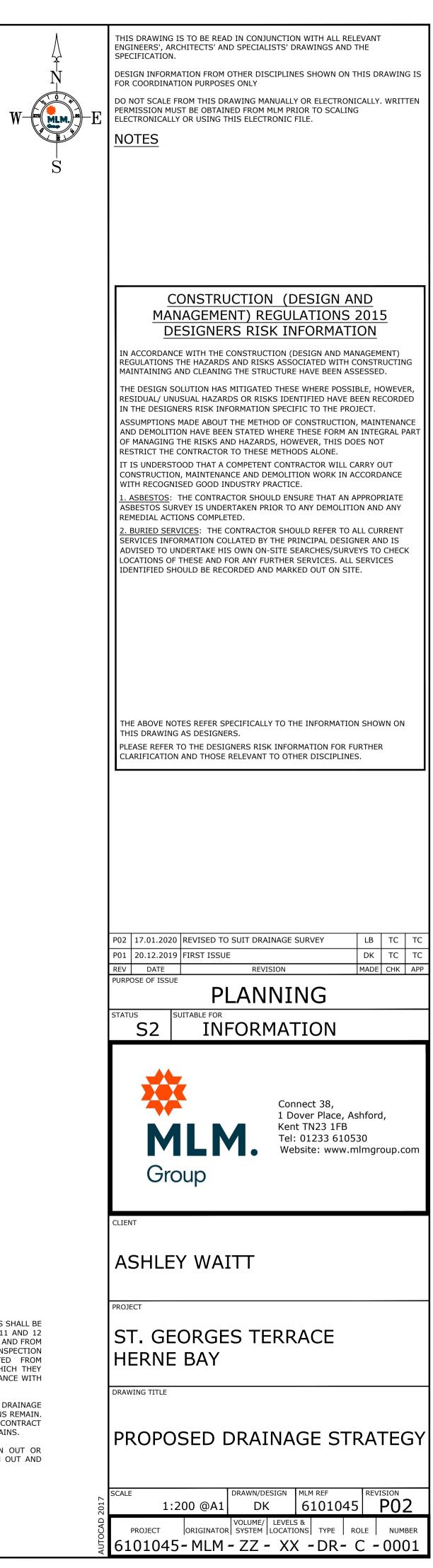
PROPOSED DISCHARGE RATES BASED ON 37mm ORIFICE PLATE FITTED TO DISCHARGE

1:100 YEAR (+40% CLIMATE CHANGE) = 2.0l/s

. <u>IMPORTANT:</u> A CCTV SURVEY WAS UNDERTAKEN BY OMEGAGEO AND THIS DEMONSTRATED THAT ALL OF THE EXISTING DRAINAGE FROM THE CURRENT DEVELOPMENT (INCLUDING BOTH FOUL AND SURFACE WATER) DRAINS INTO SOUTHERN WATER MANHOLE 0202. SOUTHERN WATER RECORDS CURRENTLY SHOW THE PIPES AS FOUL WATER, HOWEVER EVIDENCE SHOWS THIS IS NOT THE CASE. THEREFORE IT IS PROPOSED TO REPLICATE THE EXISTING CONFIGURATION, REDUCING THE EXISTING

2. NOT FOR CONSTRUCTION. SUBJECT TO DETAILED DESIGN. 3. CONNECTION INTO EXISTING SEWERS SUBJECT TO APPROVAL FROM WATER AUTHORITY.

4. DRAINAGE SUBJECT TO DETAILED LEVEL DESIGN. 5. PROPOSED DISCHARGE RATES TO BE RESTRICTED TO BE NO GREATER THAN


6. COVER LEVELS SHOWN INDICATIVELY ONLY SUBJECT TO DETAILED DESIGN. 7. ADDITIONAL CHAMBERS MAY BE REQUIRED TO SUIT CONNECTION LOCATIONS ON SITE. 8. SVP / RWP LOCATIONS SUBJECT TO DETAILED DESIGN.

<u> </u>	
—	EXISTING SURFACE WATER SEWER
<u> </u>	EXISTING FOUL WATER SEWER
	EXISTING COMBINED SEWER
≁	SEWER TO BE ABANDONED
	PROPOSED SURFACE WATER DRAIN
	PROPOSED FOUL WATER DRAIN
—	PROPOSED COMBINED SEWER
\square	PERMEABLE PAVING STORAGE
	PERMEABLE PAVING INLET
	PERMEABLE PAVING OUTLET

FOUL DRAINAGE POINT PROPOSED RAINWATER PIPE EXISTING RAINWATER PIPE

- AS (NOT ACCESSIBLE BY
- RKING BAYS / LIGHTLY

- CONDITIONS AND ANY SPECIAL REQUIREMENTS FOR BURIED CONCRETE (SPECIAL REQUIREMENTS FOR BURIED CONCRETE SHALL INCLUDE ALL PRE-CAST AND IN-SITU CONCRETE AND MORTARS). WHERE APPROPRIATE REFER TO CONTAMINATION REPORTS FOR DETAILS OF CHEMICALS AFFECTING CHOICE OF MATERIALS AND OTHER ADDITIONAL REQUIREMENTS.
- 15. ALL PRE-CAST AND IN-SITU CONCRETE AND MORTARS USED IN THE CONSTRUCTION OF FOUL DRAINS AND SEWERS SHALL BE MADE FROM SULPHATE RESISTING CEMENT.
- 16. UNLESS NOTED OTHERWISE ALL PIPEWORK SHALL BE 100mm DIAMETER LAID TO A FALL OF 1 IN 100 OR STEEPER FOR SURFACE WATER AND 1 IN 40 OR STEEPER FOR FOUL WATER. FOUL DRAINS WITH ONE OR MORE W.C. CONNECTED MAY BE LAID AT 1 IN 80 OR STEEPER. WHERE APPROPRIATE ROAD GULLY CONNECTIONS SHALL BE 150mm DIA AT 1 IN 150 OR STEEPER.
- 17. UNLESS NOTED OTHERWISE ALL PIPEWORK SHALL BE CONSTRUCTED FROM 'SUPER STRENGTH' VITRIFIED CLAY TO BS 65.BS EN 295 OR UPVC TO BS EN 1201 BEDDED AND BACKFILLED AS PER THE MANUFACTURERS RECOMMENDATIONS AND THE ABOVE LISTED PUBLICATIONS.
- 14. REFER TO SITE INVESTIGATION REPORT FOR EXISTING GROUND 18. THE CONTRACTORS ATTENTION IS DRAWN TO DIAGRAMS 7 AND 8 OF 'THE BUILDING REGULATIONS APPROVED DOCUMENT H' SHOWING 23. ACCESS FITTINGS, INSPECTION CHAMBERS AND MANHOLES SHALL BE DETAILS OF DRAINS LAID BELOW AND NEAR TO BUILDINGS. WHERE GROUND BEAMS ARE USED, THEIR LEVEL SHALL BE SET TO AVOID CLASHING WITH DRAIN CONNECTIONS.
 - 19. EXACT LOCATION OF GULLIES TO BE DETERMINED ON SITE TO SUIT LOW POINTS. THE CONTRACTOR SHALL ENSURE THAT ALL FINISHED SURFACE ARE LAID TO FALLS THAT ARE SUFFICIENT FOR ALL SURFACE WATER TO DRAIN WITHOUT SURFACE PONDING.
 - 20. FOR THE EXACT LOCATION OF SOIL PIPES, STUBSTACKS, W.C.'S AND OTHER DRAINAGE CONNECTIONS REFER TO THE LARGE SCALE ARCHITECTURAL BUILDING PLANS.
 - 21. RAINWATER DOWNPIPES THAT DO NOT CONNECT DIRECTLY TO AN 25. EXISTING PIPES TO BE ABANDONED SHALL BE BROKEN OUT OR ACCESS POINT, SHALL BE FITTED WITH A RODDING ACCESS.
 - 22. ALL DRAINAGE CHANNELS TO BE BY ACO OR SIMILAR AND TO BE OF A TYPE SIZE AND CAPACITY SUITABLE FOR THEIR LOCATION.
- THE MANUFACTURERS/SUPPLIERS RECOMMENDATIONS.
- 24. PRIOR TO COMMENCEMENT OF ANY WORKS THE EXISTING DRAINAGE
- FILLED WITH COMPACTED GRANULAR MATERIAL.

CONSTRUCTED TO THE DIMENSIONS SHOWN IN TABLES 11 AND 12 OF 'THE BUILDING REGULATIONS APPROVED DOCUMENT H' AND FROM THE MATERIALS LISTED IN TABLE 14. ACCESS POINTS, INSPECTION CHAMBERS AND MANHOLES SHALL BE CONSTRUCTED FROM PRODUCTS DESIGNED/RATED FOR THE LOCATION IN WHICH THEY ARE TO BE USED. THEY SHALL BE INSTALLED IN ACCORDANCE WITH

MUST BE TRACED TO ENSURE THAT NO 'LIVE' CONNECTIONS REMAIN. ANY SUCH CONNECTIONS MUST BE REPORTED TO THE CONTRACT ADMINISTRATOR, PRIOR TO DIVERSION INTO THE NEW DRAINS.

FILLED WITH PFA GROUT. MANHOLES SHALL BE BROKEN OUT AND

Appendix B - Drainage Calculations

MLM North Kiln Felaw Maltings	Existi	ing Bro	wnfi	eld H	Rate	5		age	
46 Felaw Street	St Geo	orges I	erra	ce			2	۱.	
Ipswich IP2 8PN	Herne	-							C
Date 19/12/19		ned by	DKen	ıt					0
File 6101045-MLM-ZZ-XX-CA-	Checke	-						Jraii	nag
XP Solutions		 ck 2017	.1.2						
Pipe Sizes S FSR Rainfa Return Period (year M5-60 (m Ratio Maximum Rainfall (mm/h Maximum Time of Concentration (min Foul Sewage (l/s/h Volumetric Runoff Coef Desi	n Criter STANDARD Ma all Model - s) 1 n) 26.250 R 0.400 r) 50 s) 30 a) 0.000	ia for anhole S - Englan Min Desi Min V Mir Level Sc	Sto. izes d and Add F Min Max .gn De fel fo a Slop	rm STANDA Wales Clow / Aimum E Cimum E Cimum E Cimum E Cor Auto Se for	RD Clima Backd: Backd: Dr Op Des:	ate Ch cop He cop He cimisa ign or	PIMP (hange (bight (bight (ation ((%) (m) 0 (m) 1 (m) 1 (s)	.200 .500 .200
Total Are	ns) (ha) 0-4 0.022 ea Contribu Pipe Volur	4-8 (h).001 a) = (
Network	Design '	Table f	for S	Storm					
PN Length Fall Slope I.Area (m) (m) (1:X) (ha)	T.E. I (mins) Flow	Base w (l/s)	k (mm)	HYD SECT		Sect	ion Typ		uto sign
s1.000 5.000 0.063 80.0 0.023	4.00	0.0	0.600	0	100	Pipe	/Condui	it	ď
s1.001 5.000 0.063 80.0 0.000	0.00		0.600			-	/Condui		ð
	. –	.							
Net	<u>work Res</u>	u⊥ts T	<u>able</u>						
PN Rain T.C. US/ILΣI (mm/hr) (mins) (m) (Base v (l/s)		Add F (1/s		Vel (m/s)	Cap (l/s)	Flo (l/s	
S1.000 50.00 4.10 9.000	0.023	0.0	0.0		0.0	0.86	6.8	3.	1
S1.001 50.00 4.19 8.938	0.023	0.0	0.0		0.0	0.86	6.8	3.	1
	· O1++-1		1~ (- 0				
<u>Free</u> Flowing	j Outial.	i vetai	<u>. 15 1</u>	or St	<u>_orm</u>				
Outfall Outfall Pipe Number Name	C. Level (m)	I. Leve (m)	I. 3	fin Level (m)	D,L (mm)	W (mm)			
\$1.001 S	10.000	8.87	5	0.000	0	0			
	2-2017 X								

MLM		Page 2
North Kiln Felaw Maltings	Existing Brownfield Rates	
46 Felaw Street	St Georges Terrace	L'
Ipswich IP2 8PN	Herne Bay	Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Drainago
XP Solutions	Network 2017.1.2	
1 year Return Period Summary Areal Reduction Fact Hot Start (mir Hot Start Level (m Manhole Headloss Coeff (Globa Foul Sewage per hectare (1/ Number of Input Hyd Number of Online Number of Offline	<u>of Critical Results by Maximum L</u> <u>for Storm</u> <u>Simulation Criteria</u> for 1.000 Additional Flow - % of Total F is) 0 MADD Factor * 10m ³ /ha Stor im) 0 Inlet Coeffici al) 0.500 Flow per Person per Day (1/per/c 's) 0.000 rographs 0 Number of Storage Structures 0 Controls 0 Number of Time/Area Diagrams 0 Controls 0 Number of Real Time Controls 0 <u>rothetic Rainfall Details</u>	Flow 0.000 rage 2.000 ient 0.800 day) 0.000
Ar Profile(s)	sk Warning (mm) 300.0 DVD Status OFF balysis Timestep Fine Inertia Status OFF DTS Status ON Summer and W	Winter
Duration(s) (mins) Return Period(s) (years) Climate Change (%)	720, 960, 1440, 2160, 2880, 4320, 5760, 8640, 1, 30	7200,
US/MH Return Cl PN Name Storm Period Ch		Water verflow Level Act. (m)
\$1.000 \$1 15 Summer 1 \$1.001 \$2 15 Summer 1	+0% 30/15 Summer +0% 30/15 Summer	9.055 8.992
Surcharged US/MH Depth PN Name (m)	-	evel eeded
S1.000 S1 -0.045	0.000 0.57 3.4 OK	
S1.001 S2 -0.046	0.000 0.57 3.4 OK	

ILM				I					Pa	ge 3
lorth Kil			ltings			ng Brown		Rates		
6 Felaw	Stre	eet		S	t Geor	rges Ter	race		4	
pswich	IP2	8PN		Н	lerne E	Bay			M	licro
ate 19/1	L2/19	9		D	esigne	ed by DK	lent			
'ile 6101	L045·	-MLM-ZZ-	XX-CA-	C	hecked	d by				rainac
P Soluti	Lons			N	letwork	x 2017.1	.2			
<u>30 year</u>	Reti	<u>ırn Peri</u>	.od Sum	_	Criti for S		ults_	<u>by Maxim</u>	um Leve	el (Ran
				actor 1.	000 A			% of Tota		
			Start (1 rt Level			MAUD F		10m³/ha S let Coeffi	2	
			oeff (Gl	obal) O.	500 Flo	w per Per		Day (1/pe		
10									0	
			-				2	Structures ea Diagrams		
								me Controls		
				Crinthat -	a Dairf	-11 Dat	10			
		Rair	nfall Mod		LC RAINI	<u>all Detai</u> FSR		R 0.400		
			Regi	on Engla	and and	Wales Cv	(Summe	r) 0.750		
			M5-60 (m	ım)	1	9.800 Cv	(Winte:	r) 0.840		
		Margin f	or Flood	Analysi	s Timest	ep Fine		D Status O a Status O		
		Margin f	or Flood	Analysi	s Timest			D Status O		
		Duration	Profile((s) (min	Analysis s) s) 720,	s Timest DTS Stat 15, 30,	tep Fine tus ON 60, 120,	Inerti 180, 2	D Status O a Status O Summer and 40, 360, 4 4320, 576 864	FF d Winter 80, 600, 0, 7200, 0, 10080	
	Retur	Duration	Profile((s) (min	Analysia s) s) 720, s)	s Timest DTS Stat 15, 30,	tep Fine tus ON 60, 120,	Inerti 180, 2	D Status O a Status O Summer and 40, 360, 4 4320, 576 864	FF d Winter 80, 600, 0, 7200,	
	Retur	Duration	Profile((s) (min s) (year	Analysia s) s) 720, s)	s Timest DTS Stat 15, 30,	tep Fine tus ON 60, 120,	Inerti 180, 2	D Status O a Status O Summer and 40, 360, 4 4320, 576 864	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100	Water
υ	Retur S/MH Name	Duration	Profile((s) (min s) (year Change (Return	Analysia s) s) 720, s)	s Timest DTS Stat 15, 30, 960, 1	<pre>cep Fine cus ON 60, 120, 440, 2160 (X) Fin</pre>	Inerti 180, 2 , 2880,	D Status O a Status O Summer and 40, 360, 4 4320, 576 864	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100 0, 0, 0	
U	S/MH Name S1	Duration on Period(Climate	Profile((s) (min s) (year Change (Return Period	Analysis s) s) 720, s) %) Climate Change +0%	s Timest DTS Stat 15, 30, 960, 1 First	(X) Fine (X) Finange I (Summer	Inerti 180, 2 , 2880,	D Status O a Status O Summer and 40, 360, 44 4320, 576 864 1, First (Z)	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100 0, 0, 0 Overflow	w Level
U PN 1 S1.000	S/MH Name S1	Duration Climate Storm 15 Winter 15 Winter	Profile((s) (min s) (year Change (Return Period	Analysis s) s) 720, s) %) Climate Change +0% +0%	s Timest DTS Stat 15, 30, 960, 1 First Surch 30/15 S 30/15 S	(X) Fine (X) Finange I (Summer	Inerti 180, 2 , 2880,	D Status O a Status O Summer and 40, 360, 44 4320, 576 864 1, First (Z)	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100 0, 0, 0 Overflow	W Level (m) 9.181
U PN 1 S1.000	S/MH Name S1	Duration Climate Storm 15 Winter 15 Winter	Profile((s) (min s) (year Change (Return Period 30 30	Analysis s) s) 720, s) %) Climate Change +0% +0% Flooded	s Timest DTS Stat 15, 30, 960, 1 First Surch 30/15 S 30/15 S	(X) Fine (X) Finange I (Summer	Inerti 180, 2 , 2880, St (Y) Flood Pipe	D Status O a Status O Summer and 40, 360, 44 4320, 576 864 1, First (Z)	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100 0, 0, 0 Overflow	V Level (m) 9.181 9.072
U PN N S1.000 S1.001	S/MH Name S1 S2	Duration Climate Storm 15 Winter 15 Winter Su US/MH	Profile((s) (min s) (year Change (Return Period 30 30 rcharged Depth	Analysis s) s) 720, s) %) Climate Change +0% +0% Flooded Volume (m ³) 0.000	s Timest DTS Stat 15, 30, 960, 1 First 30/15 s 30/15 s Flow / Cap. 1.28	cep Fine cus ON 60, 120, 440, 2160 (X) Fin arge I cummer cummer cummer Cverflow (1/s)	Inerti 180, 2 , 2880, 2880, Flood Pipe Flow (1/s) 7.6	D Status O a Status O Summer and 40, 360, 4 4320, 576 864 1, First (Z) Overflow	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100 0, 0, 0 Overflon Act. Level Exceede	V Level (m) 9.181 9.072
U PN N S1.000 S1.001	S/MH Name S1 S2 PN	Duration Climate Storm 15 Winter 15 Winter US/MH Name S1	Profile((s) (min s) (year Change (Return Period a 30 a 30 rcharged Depth (m) 0.081	Analysis s) s) 720, s) %) Climate Change +0% +0% Flooded Volume (m ³) 0.000	s Timest DTS Stat 15, 30, 960, 1 First 30/15 s 30/15 s Flow / Cap. 1.28	cep Fine cus ON 60, 120, 440, 2160 (X) Fin arge I cummer cummer cummer Cverflow (1/s)	Inerti 180, 2 , 2880, 2880, Flood Pipe Flow (1/s) 7.6	D Status O a Status O Summer and 40, 360, 4 4320, 576 864 1, First (Z) Overflow Status SURCHARGEE	FF d Winter 80, 600, 0, 7200, 0, 10080 30, 100 0, 0, 0 Overflon Act. Level Exceede	V Level (m) 9.181 9.072

6 Felaw pswich ate 19/	J Stre IP2	8PN	Ltings	S		rges T	wnfield errace	Kates	لمر	~
pswich Pate 19/ Pile 610	IP2 12/19	8PN				2	errace		2	\sim
ate 19/ ile 610	12/19			H	orno I	-				A 1
ile 610		0				-			Mi	
				D	esigne	ed by	DKent			ainac
P Solut	1045	-MLM-ZZ-Z	XX-CA-	С	hecked	d by				ייייים אוויני
	ions			N	[etwor]	c 2017	.1.2			
<u>100 yea</u>	<u>r Ret</u>	<u>urn Peri</u>	<u>od Sum</u> .	_	f Crit for S		<u>Results</u>	by Maxim	uum Level	<u>(Rar</u>
	hole H	Hot Hot Star Headloss Co ewage per h Number of	Start (r t Level beff (Glo nectare Input H	actor 1.0 mins) (mm) obal) 0.5 (1/s) 0.0	0 0 500 Flo 000 hs 0 Nu	ddition MADE w per F umber o	al Flow - Factor * Tr Person per	- % of Tota - 10m³/ha S let Coeffi - Day (1/pe - Structures ea Diagrams	torage 2.0 ecient 0.8 r/day) 0.0	00
								me Controls		
		I	fall Mod Regi M5-60 (m	on Engla mm) Risk War Analysis	nd and 1 rning (r	FSR Wales (.9.800 (nm) 300 tep Fi	Ratio Cv (Summe Cv (Winte .0 DV ne Inerti			
		I Duration	Profile((s) (min	s)				Summer and 40, 360, 44 4320, 5760 8640	80, 600,	
	Retur	rn Period(s Climate (-					1,	30, 100 0, 0, 0	
PN	US/MH Name	Storm		Climate Change	First Surch	• •	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
S1.000 S1.001		15 Winter 15 Winter	100 100		30/15 s 30/15 s					9.295 9.130
			2	Flooded		•	Pipe			
	PN	US/MH I Name	Depth (m)	Volume (m³)	Flow / Cap.	Overfl (1/s	.ow Flow) (l/s)	Status	Level Exceeded	
	51.000		0.195		-			SURCHARGED		
2			0 0 0 -		1.59			SURCHARGED		
	31.001	S2	0.093	0.000	1.59		2.4	DOIGHINGEL		

MLM		Page 1
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Y.
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Dialitage
XP Solutions	Source Control 2017.1.2	

Summary of Results for 1 year Return Period

Half Drain Time : 13 minutes.

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	ΣΟ	Max utflow l/s)	Max Volume (m³)	Status
15	min Summe	r 9.216	0.046	0.0	1.3		1.3	1.2	ΟK
30	min Summe	r 9.222	0.052	0.0	1.3		1.3	1.6	ОК
60	min Summe	r 9.225	0.055	0.0	1.3		1.3	1.8	ОК
120	min Summe	r 9.220	0.050	0.0	1.3		1.3	1.5	ОК
180	min Summe	r 9.212	0.042	0.0	1.3		1.3	1.1	ОК
240	min Summe	r 9.204	0.034	0.0	1.2		1.2	0.7	ОК
360	min Summe	r 9.190	0.020	0.0	1.2		1.2	0.3	ОК
480	min Summe	r 9.178	0.008	0.0	1.1		1.1	0.0	ОК
600	min Summe	r 9.170	0.000	0.0	1.0		1.0	0.0	ОК
720	min Summe	r 9.170	0.000	0.0	0.9		0.9	0.0	ОК
960	min Summe	r 9.170	0.000	0.0	0.7		0.7	0.0	ОК
1440	min Summe	r 9.170	0.000	0.0	0.5		0.5	0.0	ОК
2160	min Summe	r 9.170	0.000	0.0	0.4		0.4	0.0	ОК
2880	min Summe	r 9.170	0.000	0.0	0.3		0.3	0.0	ОК
4320	min Summe	r 9.170	0.000	0.0	0.2		0.2	0.0	ОК
5760	min Summe	r 9.170	0.000	0.0	0.2		0.2	0.0	ОК
7200	min Summe	r 9.170	0.000	0.0	0.2		0.2	0.0	ОК
8640	min Summe	r 9.170	0.000	0.0	0.1		0.1	0.0	ОК
10080	min Summe	r 9.170	0.000	0.0	0.1		0.1	0.0	ОК
15	min Winte	r 9.221	0.051	0.0	1.3		1.3	1.5	O K

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	41.398	0.0	1.9	15	
30	min	Summer	27.391	0.0	2.8	24	
60	min	Summer	17.456	0.0	3.8	42	
120	min	Summer	10.848	0.0	5.0	74	
180	min	Summer	8.118	0.0	5.7	106	
240	min	Summer	6.600	0.0	6.3	136	
360	min	Summer	4.925	0.0	7.1	192	
480	min	Summer	4.000	0.0	7.7	248	
600	min	Summer	3.404	0.0	8.2	0	
720	min	Summer	2.984	0.0	8.7	0	
960	min	Summer	2.419	0.0	9.4	0	
1440	min	Summer	1.801	0.0	10.5	0	
2160	min	Summer	1.341	0.0	11.6	0	
2880	min	Summer	1.089	0.0	12.4	0	
4320	min	Summer	0.811	0.0	13.5	0	
5760	min	Summer	0.655	0.0	14.2	0	
7200	min	Summer	0.556	0.0	14.7	0	
8640	min	Summer	0.486	0.0	15.0	0	
10080	min	Summer	0.434	0.0	15.2	0	
15	min	Winter	41.398	0.0	2.2	15	
		©198	2-2017	XP Sol	utions		

MLM		Page 2
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Le la
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Diamaye
XP Solutions	Source Control 2017.1.2	

	Stori Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)				Status
30	min	Winter	9.227	0.057	0.0	1.3	1.3	1.9	ОК
60	min	Winter	9.229	0.059	0.0	1.3	1.3	2.0	ΟK
120	min	Winter	9.219	0.049	0.0	1.3	1.3	1.4	ОК
180	min	Winter	9.207	0.037	0.0	1.2	1.2	0.8	ΟK
240	min	Winter	9.194	0.024	0.0	1.2	1.2	0.3	ОК
360	min	Winter	9.170	0.000	0.0	1.1	1.1	0.0	ОК
480	min	Winter	9.170	0.000	0.0	0.9	0.9	0.0	ОК
600	min	Winter	9.170	0.000	0.0	0.7	0.7	0.0	ΟK
720	min	Winter	9.170	0.000	0.0	0.6	0.6	0.0	ОК
960	min	Winter	9.170	0.000	0.0	0.5	0.5	0.0	ОК
1440	min	Winter	9.170	0.000	0.0	0.4	0.4	0.0	ОК
2160	min	Winter	9.170	0.000	0.0	0.3	0.3	0.0	ОК
2880	min	Winter	9.170	0.000	0.0	0.2	0.2	0.0	ΟK
4320	min	Winter	9.170	0.000	0.0	0.2	0.2	0.0	ΟK
5760	min	Winter	9.170	0.000	0.0	0.1	0.1	0.0	ОК
7200	min	Winter	9.170	0.000	0.0	0.1	0.1	0.0	ОК
8640	min	Winter	9.170	0.000	0.0	0.1	0.1	0.0	ΟK
10080	min	Winter	9.170	0.000	0.0	0.1	0.1	0.0	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume		(mins)
				(m³)	(m³)	
30	min	Winter	27.391	0.0	3.2	26
60	min	Winter	17.456	0.0	4.5	44
120	min	Winter	10.848	0.0	5.8	80
180	min	Winter	8.118	0.0	6.6	110
240	min	Winter	6.600	0.0	7.2	138
360	min	Winter	4.925	0.0	8.1	0
480	min	Winter	4.000	0.0	8.8	0
600	min	Winter	3.404	0.0	9.4	0
720	min	Winter	2.984	0.0	9.9	0
960	min	Winter	2.419	0.0	10.7	0
1440	min	Winter	1.801	0.0	11.9	0
2160	min	Winter	1.341	0.0	13.2	0
2880	min	Winter	1.089	0.0	14.1	0
4320	min	Winter	0.811	0.0	15.5	0
5760	min	Winter	0.655	0.0	16.3	0
7200	min	Winter	0.556	0.0	16.9	0
8640	min	Winter	0.486	0.0	17.4	0
10080	min	Winter	0.434	0.0	17.7	0

MLM		Page 3
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Y.
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Diamaye
XP Solutions	Source Control 2017.1.2	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	1	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	26.250	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +0

<u>Time Area Diagram</u>

Total Area (ha) 0.037

Time (mins) Area From: To: (ha)

0 4 0.037

MLM		Page 4
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Y.
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Dialitage
XP Solutions	Source Control 2017.1.2	

<u>Model Details</u>

Storage is Online Cover Level (m) 9.650

<u>Porous Car Park Structure</u>

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	8.0
Membrane Percolation (mm/hr)	1000	Length (m)	24.0
Max Percolation (l/s)	53.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.170	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.037 Discharge Coefficient 0.600 Invert Level (m) 9.000

MLM		Page 1
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Y.
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Dialitage
XP Solutions	Source Control 2017.1.2	

Summary of Results for 30 year Return Period

Half Drain Time : 51 minutes.

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min Summe	r 9.282	0.112	0.0	1.5	1.5	5.1	ОК
30	min Summe	r 9.301	0.131	0.0	1.5	1.5	6.2	ΟK
60	min Summe	r 9.306	0.136	0.0	1.5	1.5	6.5	ОК
120	min Summe	r 9.298	0.128	0.0	1.5	1.5	6.0	ОК
180	min Summe	r 9.287	0.117	0.0	1.5	1.5	5.4	ОК
240	min Summe	r 9.276	0.106	0.0	1.5	1.5	4.7	ОК
360	min Summe	r 9.257	0.087	0.0	1.4	1.4	3.6	ОК
480	min Summe	r 9.240	0.070	0.0	1.3	1.3	2.7	ОК
600	min Summe	r 9.227	0.057	0.0	1.3	1.3	1.9	ОК
720	min Summe	r 9.216	0.046	0.0	1.3	1.3	1.3	ОК
960	min Summe	r 9.198	0.028	0.0	1.2	1.2	0.5	ОК
1440	min Summe	r 9.170	0.000	0.0	1.0	1.0	0.0	ОК
2160	min Summe	r 9.170	0.000	0.0	0.7	0.7	0.0	ОК
2880	min Summe	r 9.170	0.000	0.0	0.6	0.6	0.0	ОК
4320	min Summe	r 9.170	0.000	0.0	0.4	0.4	0.0	ОК
5760	min Summe	r 9.170	0.000	0.0	0.3	0.3	0.0	ОК
7200	min Summe	r 9.170	0.000	0.0	0.3	0.3	0.0	ОК
8640	min Summe	r 9.170	0.000	0.0	0.2	0.2	0.0	ОК
10080	min Summe	r 9.170	0.000	0.0	0.2	0.2	0.0	ОК
15	min Winte	r 9.296	0.126	0.0	1.5	1.5	5.9	O K

	Stor Even		Rain (mm/hr)			Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	101.239	0.	0	6.1	17	
30	min	Summer	65.473	Ο.	0	8.1	31	
60	min	Summer	40.257	Ο.	0	10.2	48	
120	min	Summer	23.937	Ο.	0	12.3	82	
180	min	Summer	17.563	Ο.	0	13.6	116	
240	min	Summer	14.070	Ο.	0	14.6	150	
360	min	Summer	10.271	0.	0	16.0	214	
480	min	Summer	8.204	0.	0	17.1	276	
600	min	Summer	6.888	0.	0	17.9	336	
720	min	Summer	5.969	0.	0	18.6	392	
960	min	Summer	4.758	0.	0	19.8	504	
1440	min	Summer	3.453	0.	0	21.5	0	
		Summer	2.503	0.	0	23.2	0	
		Summer	1.990	0.	0	24.4	0	
		Summer	1.441	0.	0	26.1	0	
		Summer		0.		27.3	0	
		Summer	0.960	0.		28.1	0	
		Summer		0.		28.8	0	
		Summer	0.735	0.		29.3	0	
15	min	Winter	101.239	0.	0	6.9	17	
		©198	82-2017	XP So	olı	utions		

MLM		Page 2
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	4
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Dialitage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)				Status
30	min W	inter	9.319	0.149	0.0	1.6	1.6	7.2	ОК
60	min W	inter	9.326	0.156	0.0	1.6	1.6	7.6	ΟK
120	min W	inter	9.313	0.143	0.0	1.6	1.6	6.9	ΟK
180	min W	inter	9.297	0.127	0.0	1.5	1.5	5.9	ΟK
240	min W	inter	9.281	0.111	0.0	1.5	1.5	5.0	ΟK
360	min W	inter	9.252	0.082	0.0	1.4	1.4	3.3	ΟK
480	min W	inter	9.228	0.058	0.0	1.3	1.3	2.0	ΟK
600	min W	inter	9.211	0.041	0.0	1.3	1.3	1.0	ΟK
720	min W	inter	9.194	0.024	0.0	1.2	1.2	0.3	ΟK
960	min W	inter	9.170	0.000	0.0	1.0	1.0	0.0	ΟK
1440	min W	inter	9.170	0.000	0.0	0.7	0.7	0.0	ΟK
2160	min W	inter	9.170	0.000	0.0	0.5	0.5	0.0	ОК
2880	min W	inter	9.170	0.000	0.0	0.4	0.4	0.0	ОК
4320	min W	inter	9.170	0.000	0.0	0.3	0.3	0.0	ΟK
5760	min W	inter	9.170	0.000	0.0	0.2	0.2	0.0	ОК
7200	min W	inter	9.170	0.000	0.0	0.2	0.2	0.0	ΟK
8640	min W	inter	9.170	0.000	0.0	0.2	0.2	0.0	ΟK
10080	min W	inter	9.170	0.000	0.0	0.2	0.2	0.0	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
30	min	Winter	65.473	0.0	9.2	31
60	min	Winter	40.257	0.0	11.5	52
120	min	Winter	23.937	0.0	13.8	90
180	min	Winter	17.563	0.0	15.3	126
240	min	Winter	14.070	0.0	16.5	162
360	min	Winter	10.271	0.0	18.0	228
480	min	Winter	8.204	0.0	19.3	288
600	min	Winter	6.888	0.0	20.2	344
720	min	Winter	5.969	0.0	21.0	392
960	min	Winter	4.758	0.0	22.3	0
1440	min	Winter	3.453	0.0	24.2	0
2160	min	Winter	2.503	0.0	26.2	0
2880	min	Winter	1.990	0.0	27.6	0
4320	min	Winter	1.441	0.0	29.6	0
5760	min	Winter	1.146	0.0	31.0	0
7200	min	Winter	0.960	0.0	32.0	0
8640	min	Winter	0.830	0.0	32.8	0
10080	min	Winter	0.735	0.0	33.4	0

MLM		Page 3
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	4
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Diamaye
XP Solutions	Source Control 2017.1.2	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	30	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	26.250	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +0

<u>Time Area Diagram</u>

Total Area (ha) 0.037

Time	(mins)	Area
From:	To:	(ha)

0 4 0.037

MLM		Page 4
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Y.
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Dialitage
XP Solutions	Source Control 2017.1.2	

<u>Model Details</u>

Storage is Online Cover Level (m) 9.650

<u>Porous Car Park Structure</u>

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	8.0
Membrane Percolation (mm/hr)	1000	Length (m)	24.0
Max Percolation (l/s)	53.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.170	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.037 Discharge Coefficient 0.600 Invert Level (m) 9.000

M									Page 1	
orth Kiln	Felaw M	ſaltir	ıgs	Perm	Permeable Paving					
6 Felaw S	treet			St G	St Georges Terrace					
Ipswich IP2 8PN										
ate 19/12	/19			Desi	gned k	by DKe	nt			
ile 61010	45-MLM-Z2	z-xx-c	CA-	Chec	ked by	7			Digin	
P Solutio	ns			Sour	ce Cor	ntrol	2017.1.	2		
	<u>Summary</u>	of Re	esults	for 10)0 yea:	r Retu	rn Peri	od (+4	10%) <u></u>	
			Half	Drain Ti	.me : 93	minute	es.			
	Storm	Max	Max	Max		Max	Max	Max	Status	
	Event	Level	Depth	Infiltra	tion Co	ntrol S	COutflow	Volume		
		(m)	(m)	(1/s) (1/s)	(1/s)	(m³)		
15	min Summer	9 379	0 209		0.0	1.7	1.7	10 6	Flood Risk	
	min Summer				0.0	1.8	1.7		Flood Risk Flood Risk	
	min Summer				0.0	1.9	1.9		Flood Risk	
	min Summer				0.0	1.8	1.8		Flood Risk	
	min Summer				0.0	1.8	1.8		Flood Risk	
	min Summer				0.0	1.8	1.8		Flood Risk	
	min Summer				0.0	1.7	1.7		Flood Risk	
	min Summer				0.0	1.7	1.7		Flood Risk	
	min Summer				0.0	1.6	1.6			
	min Summer				0.0	1.6	1.6			
	min Summer				0.0	1.5	1.5			
	min Summer				0.0	1.3	1.3			
	min Summer				0.0	1.2	1.2			
	min Summer				0.0	1.0	1.0			
	min Summer				0.0	0.7	0.7			
	min Summer				0.0	0.6	0.6			
	min Summer				0.0	0.5	0.5			
	min Summer				0.0	0.4		0.0		
	min Summer				0.0	0.4	0.4			
	min Winter				0.0	1.8	1.8		Flood Risk	
		Stor		Rain			arge Time			
		Even	t	(mm/hr)	Volume (m³)	Volu (m ³	•	ins)		
		15 min	Summer	185.630	0.0)	11.9	18		
		30 min	Summer	120.567	0.0)	15.7	32		
				73.889	0.0		19.5	60		

				()		()	
15	min	Summer	185.630	0.	. 0	11.9	18
30	min	Summer	120.567	0.	. 0	15.7	32
60	min	Summer	73.889	0.	. 0	19.5	60
120	min	Summer	43.472	0.	. 0	23.1	90
180	min	Summer	31.706	0.	. 0	25.4	124
240	min	Summer	25.287	0.	. 0	27.0	158
360	min	Summer	18.336	0.	. 0	29.4	228
480	min	Summer	14.573	0.	. 0	31.2	294
600	min	Summer	12.186	0.	. 0	32.6	358
720	min	Summer	10.523	0.	. 0	33.8	420
960	min	Summer	8.342	0.	. 0	35.7	542
1440	min	Summer	6.003	0.	. 0	38.5	780
2160	min	Summer	4.312	0.	. 0	41.2	1108
2880	min	Summer	3.407	0.	. 0	43.3	0
4320	min	Summer	2.442	0.	. 0	46.1	0
5760	min	Summer	1.930	0.	. 0	48.2	0
7200	min	Summer	1.609	0.	. 0	49.7	0
8640	min	Summer	1.386	0.	. 0	51.0	0
10080	min	Summer	1.222	0.	. 0	52.0	0
15	min	Winter	185.630	0.	. 0	13.4	18
		©198	82-2017	XP S	olut	ions	

MLM		Page 2
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	<u>Y</u>
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	
Summary of Results for	or 100 year Return Period (+40%)	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
30	min Winte	er 9.458	0.288	0.0	1.9	1.9	15.2	Flood Risk
60	min Winte	er 9.486	0.316	0.0	2.0	2.0	16.8	Flood Risk
120	min Winte	er 9.477	0.307	0.0	1.9	1.9	16.3	Flood Risk
180	min Winte	er 9.458	0.288	0.0	1.9	1.9	15.2	Flood Risk
240	min Winte	er 9.437	0.267	0.0	1.8	1.8	14.0	Flood Risk
360	min Winte	er 9.397	0.227	0.0	1.8	1.8	11.7	Flood Risk
480	min Winte	er 9.361	0.191	0.0	1.7	1.7	9.6	Flood Risk
600	min Winte	er 9.329	0.159	0.0	1.6	1.6	7.8	0 K
720	min Winte	er 9.302	0.132	0.0	1.5	1.5	6.2	0 K
960	min Winte	er 9.257	0.087	0.0	1.4	1.4	3.6	O K
1440	min Winte	er 9.201	0.031	0.0	1.2	1.2	0.6	0 K
2160	min Winte	er 9.170	0.000	0.0	0.9	0.9	0.0	O K
2880	min Winte	er 9.170	0.000	0.0	0.7	0.7	0.0	0 K
4320	min Winte	er 9.170	0.000	0.0	0.5	0.5	0.0	O K
5760	min Winte	er 9.170	0.000	0.0	0.4	0.4	0.0	0 K
7200	min Winte	er 9.170	0.000	0.0	0.3	0.3	0.0	O K
8640	min Winte	er 9.170	0.000	0.0	0.3	0.3	0.0	0 K
10080	min Winte	er 9.170	0.000	0.0	0.3	0.3	0.0	0 K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
30	min	Winter	120.567	0.0	17.7	31
60	min	Winter	73.889	0.0	21.9	60
120	min	Winter	43.472	0.0	26.0	96
180	min	Winter	31.706	0.0	28.5	134
240	min	Winter	25.287	0.0	30.4	172
360	min	Winter	18.336	0.0	33.1	246
480	min	Winter	14.573	0.0	35.1	314
600	min	Winter	12.186	0.0	36.7	380
720	min	Winter	10.523	0.0	38.0	444
960	min	Winter	8.342	0.0	40.1	568
1440	min	Winter	6.003	0.0	43.3	778
2160	min	Winter	4.312	0.0	46.4	0
2880	min	Winter	3.407	0.0	48.7	0
4320	min	Winter	2.442	0.0	52.0	0
5760	min	Winter	1.930	0.0	54.3	0
7200	min	Winter	1.609	0.0	56.2	0
8640	min	Winter	1.386	0.0	57.7	0
10080	min	Winter	1.222	0.0	58.9	0

MLM		Page 3
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	4
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Diamaye
XP Solutions	Source Control 2017.1.2	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	26.250	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.037

Time	(mins)	Area
From:	To:	(ha)

0 4 0.037

MLM		Page 4
North Kiln Felaw Maltings	Permeable Paving	
46 Felaw Street	St Georges Terrace	Y.
Ipswich IP2 8PN		Micco
Date 19/12/19	Designed by DKent	
File 6101045-MLM-ZZ-XX-CA-	Checked by	Dialitage
XP Solutions	Source Control 2017.1.2	

<u>Model Details</u>

Storage is Online Cover Level (m) 9.650

<u>Porous Car Park Structure</u>

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	8.0
Membrane Percolation (mm/hr)	1000	Length (m)	24.0
Max Percolation (l/s)	53.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	9.170	Membrane Depth (m)	0

Orifice Outflow Control

Diameter (m) 0.037 Discharge Coefficient 0.600 Invert Level (m) 9.000

T 01233 610530 A Connect 38 1 Dover Place Ashford

Kent TN23 1FB

www.mlmgroup.com