

	Project		Job no.			
1	В	aker's Lane, Ch	301817			
	Calcs for		Start page no./Revision			
		Soakawa			1	
	Calcs by MW	Calcs date 22/05/2018	Checked by PB	Checked date	Approved by	Approved date

SOAKAWAY DESIGN

In accordance with BRE Digest 365 - Soakaway design

Tedds calculation version 2.0.03

Design rainfall intensity

Ratio 60 min to 2 day rainfall of 5 yr return period r = 0.450

5-year return period rainfall of 60 minutes duration M5_60min = **20.0** mm

Increase of rainfall intensity due to global warming $p_{climate} = 40 \%$

Soakaway / infiltration trench details

Soakaway type Rectangular Minimum depth of pit (below incoming invert) d = 800 mm Width of pit w = 1057 mm Length of pit l = 2000 mm Percentage free volume $V_{\text{free}} = 95 \%$ Soil infiltration rate $f = 370. \times 10^{-6} \text{ m/s}$

Wetted area of pit 50% full $a_{s50} = I_{\times}d + w_{\times}d = 2445651 \text{ mm}^2$

Table equations

Inflow (cl.3.3.1) $I = M100 \times A$ $Outflow (cl.3.3.2) <math display="block">O = a_{\$50} \times f \times D$ Storage (cl.3.3.3) <math display="block">S = I - O

Duration, D (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	100 year rainfall, M100 (mm)	Inflow (m³)	Outflow (m³)	Storage required (m³)
5	0.39;	10.9;	1.92;	21.0;	1.39;	0.27;	1.12
10	0.54;	15.1;	1.99;	30.1;	1.99;	0.54;	1.44
15	0.65;	18.2;	2.02;	36.7;	2.42;	0.81;	1.61
30	0.82;	23.0;	2.02;	46.3;	3.06;	1.63;	1.43
60	1.00;	28.0;	1.99;	55.6;	3.67;	3.26;	0.41
120	1.19;	33.3;	1.94;	64.8;	4.27;	6.52;	0.00
240	1.38;	38.6;	1.90;	73.5;	4.85;	13.03;	0.00
360	1.51;	42.3;	1.87;	79.1;	5.22;	19.55;	0.00
600	1.68;	47.0;	1.83;	86.3;	5.69;	32.58;	0.00
1440	2.03;	56.8;	1.76;	100.2;	6.62;	78.18;	0.00

Required storage volume $S_{req} = 1.61 \text{ m}^3$

Soakaway storage volume $S_{act} = I_{\times} d_{\times} w_{\times} V_{free} = 1.61 \text{ m}^3$

PASS - Soakaway storage volume

Time for emptying soakaway to half volume $t_{s50} = S_{req} \times 0.5 \ / \ (a_{s50} \times f) \ = 14 min \ 50 s$

PASS - Soakaway discharge time less than or equal to 24 hours