
Surface Water Drainage Design Enabling Development of Three Detached Houses Land adjacent to Lower Island House Island Wall Whitstable CT5 1EE

Kapra Developments Ltd

7th May 2017

RMB Consultants (Civil Engineering) Ltd 39 Cossington Road Canterbury Kent CT1 3HU

Tel 01227 472128 www.rmbconsultants.co.uk © RMB Consultants (Civil Engineering) Ltd 2017

1. Introduction

The following surface water drainage design has been produced for enabling development of three detached houses on land adjacent to Lower Island House, Island Wall, Whitstable, CT5 1EE. The design provides details for the discharge of Condition 10 of Planning Permission CA/15/02180/OUT.

Condition 10

Before the development is commenced, details shall be submitted to the Local Planning Authority for its approval of the proposed means of disposing of surface water. The development shall not be carried out other than in accordance with such details as may be approved.

If a Sustainable Drainage System (SUDS) is used the submitted details shall:

a) Specify the responsibilities of each party for the implementation of the SUDS scheme,

b) Specify a timetable for implementation,

c) and Provide a management and maintenance plan of the SUDS for the lifetime of the development.

REASON: Pursuant to Articles 35 (1) and (2) of the Town and Country Planning (Development Management Procedure) (England) Order 2015, the local planning authority is satisfied that the requirements of this condition (including the timing of compliance) are so fundamental to the development permitted that, if not imposed, it would have been necessary to refuse permission for the development. This is because, at the time of granting permission, full details of the drainage scheme for the development to allow an assessment of the implication for surrounding development were not yet available but this information is necessary to ensure the development complies with Canterbury District Local Plan 2006 Policy C31 and Draft Canterbury District Local Plan 2014 Policy CC11. To ensure the development is satisfactorily drained and to prevent localised flooding.

2. Hydrology

Geology and Soils - The bedrock geology consists of the London Clay Formation, clay and silt. Superficial deposits consist of Alluvium, clay, silty, peaty and sandy. Soils are classified as loamy and clayey soils of coastal flats with naturally high groundwater.

Topographical Survey - A detailed topographical survey has been carried out. The site slopes from west to east from a high point of 4.5mAOD (Above Ordnance Datum) to a low point of 2.1mAOD, Figure 1.

RM

Figure 1. Local topography.

Groundwater - The site lies outside any groundwater source protection zones. Records of borehole sunk near the site indicate a groundwater level of 2.3mAOD. Groundwater levels at the site are therefore high and likely to be within 1m of the lowest points on the site.

Infiltration Rates - Soakage testing has not been carried out at the site. The presence of London Clay, local drainage ditches and the high groundwater level means that a surface water drainage strategy based on discharge to a watercourse is the most appropriate with any storage structures constructed at a shallow level.

Existing Surface Water Drainage Patterns - The existing site drains to a ditch running along the eastern boundary. This in turn drains to a ditch along the southern boundary, Figure 2.

RME

Figure 2. Local Hydrology.

Sewer Record - A surface water sewer runs between the two drains from east to west, Figure 3. It is not known if the ditches discharge to the surface water sewer but is considered likely as this offers the only outlet for surface water in the area.

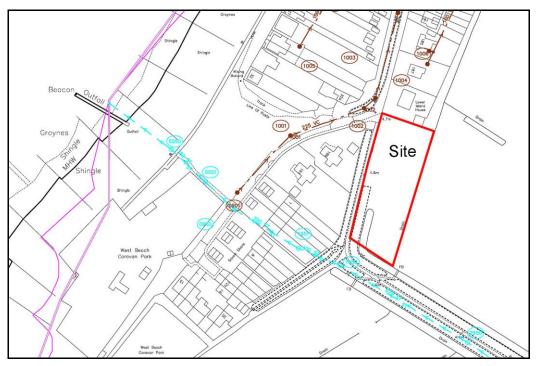


Figure 3. Sewer record. (© Southern Water)

Existing Site - The site is a greenfield site, covering 0.28ha. The peak greenfield runoff for the critical storm duration for the pre-development site has been calculated using the IH124 method from the greenfield runoff rate estimation tool published online by HR Wallingford at uksuds.com. The peak runoff is shown in Table 1.

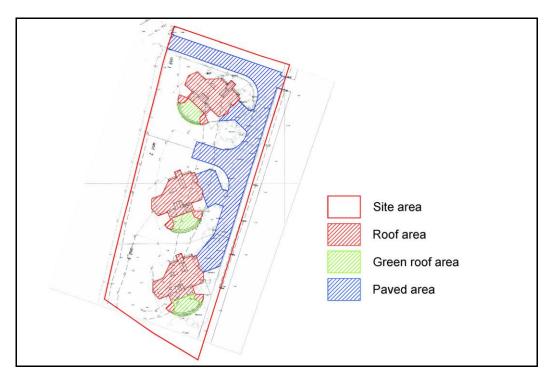

Return	Runoff Rate Q I/s					
Period	per ha.	Site (0.28 ha)				
QBar	3.9	1.1				
1	3.3	0.9				
30	8.9	2.5				
100	12.4	3.5				

Table 1. Pre-development greenfield runoff rate for the site.

3. Surface Water Management Strategy

The presence of London Clay, local drainage ditches and the high groundwater level means that a surface water drainage strategy based on discharge to the local drainage ditch is the most appropriate, using shallow attenuation structures to limit the peak rate of surface water discharge.

The proposed site is covered with 1,080m² of potentially impermeable materials consisting of 500m² of roof area, of which 100m² will be green roof, and 580m² of paved area, Figure 4.

RMF

Figure 4. Proposed impermeable areas.

The peak rate of runoff and volume of runoff for the critical storm duration for the existing and proposed site, is shown in Table 2.

Storm Return Period (years)	Peak Runoff (Q I/s)		Volume of Runoff 360 minute duration storm (m ³)			
	Existing (greenfield 1,080m²)	Proposed (1,080m²)	Existing (greenfield 1,080m²)	Proposed (1,080m²)		
1	0.4	8.5	9.0	19.0		
30	1.0	20.7	20.9	41.9		
100	1.3	27.0	28.4	54.4		
100 + 20%	1.6	32.4	34.1	65.3		
100 + 40%	1.9	37.8				

Table 2. Peak rate of runoff and volume of runoff from the existing and proposed site.

The aim of the surface water management strategy is to replicate the existing drainage patterns by providing storage to limit peak runoff from the site to existing rates. This is in line with the Defra and DCLG Non-Statutory Technical Standards which state:

Peak flow control

S2 For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.

Given the small development area the peak runoff for the 1 year rainfall event is only 0.4 l/s.

A discharge of 2 l/s from the site is considered to be the minimum achievable. A flow rate less than this would require orifice plates that are too small and would be liable to block, increasing flood risk.

The surface water management strategy is to use permeable paving to attenuate surface water runoff from roofs and paving before discharging to the ditch, Figure 5. The paving will provided storage only and will be lined as infiltration is not feasible.

The design parameters for the permeable paving are shown in Table 3. The structures have been analysed using MicroDrainage Source Control published by XP Solutions. The analysis is shown in Appendix A.

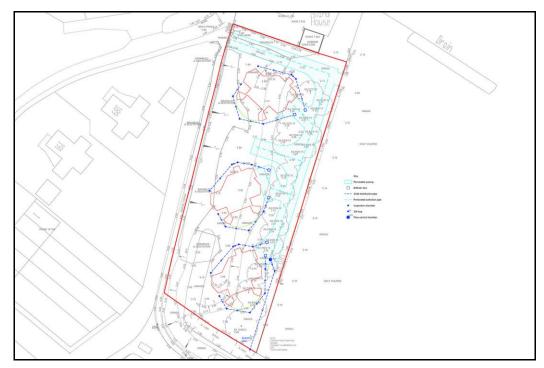


Figure 5. Surface water management strategy.

With these structures in place peak runoff from the development is limited to 2 l/s under all rainfall events up to the 1 in 100 year, plus an allowance of 20% for climate change, event.

The drainage layout is shown on drawing 731/102 Surface Water Drainage Layout.

Parameter	Permeable Paving
Rainfall return period	1 in 100 year + 20%
Permeable paving area	480m ²
Permeable paving depth	300mm
Contributing area (paved)	580m ²
Contributing area (roofs)	500m ²
Controlled discharge	2 l/s
Orifice diameter	34mm
Maximum water depth	265mm
Half drain time	174 minutes

Table 3. Design parameters for the permeable paving.

Under the 1 in 100 year, plus 40% allowance for climate change, event, the permeable paving floods with a flooded volume of 3m³. This volume will discharge to the ditch or overflow onto the golf course and not affect the proposed development or adjacent properties.

4. Water Quality

The SuDS Manual gives the following as standards of good practice for water quality:

Water quality standard 1: Prevent runoff from the site to receiving surface waters for the majority of small rainfall events.

No runoff should be discharged from the site to receiving surface waters or sewers for the majority of small (eg < 5 mm) rainfall events. This is termed Interception.

Water quality standard 2: Treat runoff to prevent negative impacts on the receiving water quality.

Runoff should be adequately treated to protect the receiving water body from:

- 1. Short-term acute pollution that may result from accidental spills or temporary high pollution loadings within the catchment area.
- 2. Long-term chronic pollution from the spectrum of runoff pollutant sources within the urban environment.

Water Quality Standard 1 - Interception

The permeable paving will act as interception storage. Runoff from smaller events will be retained within the permeable paving, maximising evapo-transpiration. Runoff from rainfall events up to 5mm is unlikely to discharge from the site. The proposed strategy therefore meets the interception standard.

Water Quality Standard 2 - Treatment

The extent of treatment required depends on the land use, the level of pollution prevention in the catchment and for groundwater the natural protection afforded by underlying soil layers. High hazard sites will have a higher potential pollution load and higher potential maximum pollution concentrations. They therefore tend to require more treatment than low hazard sites in order to deliver discharges of an acceptable quality.

The SuDS Manual sets out minimum water quality management requirements for discharges to receiving surface waters and groundwater for various land use types, Table 4. The site consists of two land use types:

- 1. Roofs to buildings classed as *residential roofs*, very low pollution hazard.
- 2. The low traffic access road and drives classed as *property driveways/low traffic roads*, low pollution hazard.

Land use	Pollution hazard	Requirements for discharge to:			
	level	surface waters	groundwater		
Residential roofs	Very low	Removal of gross solids and sediments only			
Individual property driveways, roofs (excluding residential), residential car parks, low traffic roads (eg cul de sacs, home zones, general access roads), non- residential car parking with infrequent change (eg schools, offices)	Low	Simple index approach Note: extra measures may be rec resources	uired for discharges to protected		
Commercial yard and delivery areas, non- residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	Simple index approach Note: extra measures may be rec resources	In England and Wales, Risk Screening must be undertaken first to determine whether consultation with the environmental regulator is required.		
Trunk roads and motorways	High	Follow the guidance and risk assessment proces set out in HA (2009)			
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels are to be delivered, handled, stored, used or manufactured, industrial sites	High	Discharges may require an environmental licence or permit. Obtain pre-permitting advice from the environmental regulator. Risk assessment is likely to be required.			

Note 1. Filter drains can remove coarse sediments, but their use for this purpose will have significant implications with respect to maintenance requirements, and this should be taken into account in the design and Maintenance Plan.

Note 2. Ponds and wetlands can remove coarse sediments, but their use for this purpose will have significant implications with respect to the maintenance requirements and amenity value of the system. Sediment should normally be removed upstream, unless they are specifically designed to retain sediment in a separate part of the component, where it cannot easily migrate to the main body of water.

Note 3. Where a wetland is not specifically designed to provide significantly enhanced treatment, it should be considered as having the same mitigation indices as a pond.

Table 4. Indicative SuDS mitigation indices for discharge to surface waters and groundwater.

For each land use type a simple index approach is appropriate which involves the following steps:

- 1. Allocate suitable pollution hazard indices for the proposed land use, Table 5.
- 2. Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index, Table 6.

Land Use	Pollution hazard level	Total suspended solids	Metals	Hydro- carbons				
Residential Roofs	Very low	0.2	0.2	0.05				
Other roofs (commercial/industrial)	Low	0.3	0.2 ¹	0.05				
Individual property driveways, residential car parks, low traffic roads and non-residential car parking with infrequent change (eg schools, offices) <300 traffic movements/day	Low	0.5	0.4	0.4				
Commercial yard and delivery areas, non- residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7				
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites, sites where chemicals and fuels are to be delivered, handled, stored, used or manufactured, industrial sites, trunk roads and motorways ²	High	0.8 ³	0.8 ³	0.9 ³				
Note 1. Up to 0.8 where there is potential for metals to leach from the roof. Note 2. Motorways and trunk roads should follow the guidance and risk assessment process set out in Highways Agency (2009) Note 3. These should only be used if considered appropriate as part of a detailed risk assessment.								

Table 5. Pollution hazard indices for different land use classifications.

To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index, for each contaminant type, that equals or exceeds the pollution hazard index, for each contaminant type. Where the mitigation index of an individual component is insufficient, two components, or more, in series will be required. A factor of 0.5 is used to account for the reduced performance of secondary or tertiary components.

Type of SuDS component	Total suspended solids	Metals	Hydro-carbons			
Filter strip	0.4	0.4	0.5			
Filter drain	0.41	0.4	0.4			
Swale	0.5	0.6	0.6			
Bioretention system	0.8	0.8	0.8			
Permeable pavement	0.7	0.6	0.7			
Detention basin	0.5	0.5	0.5			
Pond	0.72	0.7	0.5			
Wetland ³	0.8 ²	0.8	0.8			
Proprietary treatment system	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.					

Note 1. Filter drains can remove coarse sediments, but their use for this purpose will have significant implications with respect to maintenance requirements, and this should be taken into account in the design and Maintenance Plan.

Note 2. Ponds and wetlands can remove coarse sediments, but their use for this purpose will have significant implications with respect to the maintenance requirements and amenity value of the system. Sediment should normally be removed upstream, unless they are specifically designed to retain sediment in a separate part of the component, where it cannot easily migrate to the main body of water.

Note 3. Where a wetland is not specifically designed to provide significantly enhanced treatment, it should be considered as having the same mitigation indices as a pond.

Table 6. Indicative SuDS mitigation indices for discharge to surface waters.

All runoff will pass through the permeable paving. The total pollution mitigation index will be equal or greater than the pollution hazard index for all pollutants, Table 7. All runoff from the site will therefore receive an appropriate level of water quality treatment.

Indices	Total suspended solids	Metals	Hydro-carbons
Residential roofs			
Maximum hazard index	0.2	0.2	0.05
Minimum SuDS mitigation index (permeable paving)	0.7	0.6	0.7
Appropriate treatment	✓	\checkmark	✓
Access road/car parking areas			
Maximum hazard index	0.5	0.4	0.4
Minimum SuDS mitigation index (permeable paving)	0.7	0.6	0.7
Appropriate treatment	✓	\checkmark	✓

Table 7. Pollution hazard indices and SuDS mitigation indices for the development.

5. Timetable for implementation

The permeable paving will be constructed following initial groundworks and before any impermeable surfaces are constructed to prevent mud and silt from blocking the paving during groundworks.

6. Management and Maintenance

A Sustainable Urban Drainage Systems Management and Maintenance Plan is attached at Appendix B.

7. Kent County Council Drainage Summary

Kent County Council as Lead Local Flood Authority has published a Drainage Strategy Summary form to accompany planning applications. The completed form is attached at Appendix C.

Appendix A - Permeable Paving Design

									D 1
RMB Consultant				-		• - •			Page 1
39 Cossington 3	Road					and Wall			5
Canterbury				Whit	stable,	CT5 1EI	Ξ		14
Kent CT1 3HU				Perm	eable H	Paving De	esign		Micco
Date 07/05/17				Desi	gned by	y RB			
File permeable	pavino	g cont	ro	Chec	ked by				Draina
Micro Drainage		-				rol 201	6.1		
Sur	nmary c	of Res	ults f	or 10	0 year	Return	Period	(+20%)	<u>)</u>
		Н	alf Dra	ain Tin	ne : 174	minutes.			
Sto	rm	Max	Max	Ma	ıx	Max	Max	Max	Status
Eve	nt	Level	Depth 3	Infilt	ration C	ontrol Σ	Outflow	Volume	
		(m)	(m)	(1/	's)	(1/s)	(1/s)	(m³)	
15 min	Summer	1.957	0.127		0.0	1.7	1.7	18.3	O K
30 min	Summer	2.001	0.171		0.0	1.8	1.8	24.6	0 K
60 min	Summer	2.039	0.209		0.0	1.9	1.9	30.1	O K
	Summer				0.0	1.9	1.9	32.8	0 K
180 min	Summer	2.055	0.225		0.0	1.9	1.9	32.3	
	Summer				0.0	1.9	1.9	31.3	O K
360 min	Summer	2.032	0.202		0.0	1.8	1.8	29.1	O K
	Summer				0.0	1.8	1.8	27.2	O K
600 min	Summer	2.006	0.176		0.0	1.8	1.8	25.4	O K
720 min	Summer	1.994	0.164		0.0	1.8	1.8	23.7	O K
960 min	Summer	1.971	0.141		0.0	1.7	1.7	20.3	O K
1440 min	Summer	1.931	0.101		0.0	1.7	1.7	14.5	ΟK
2160 min	Summer	1.884	0.054		0.0	1.6	1.6	7.8	O K
2880 min	Summer	1.854	0.024		0.0	1.5	1.5	3.4	O K
4320 min	Summer	1.830	0.000		0.0	1.4	1.4	0.0	O K
5760 min	Summer	1.830	0.000		0.0	1.1	1.1	0.0	O K
7200 min	Summer	1.830	0.000		0.0	0.9	0.9	0.0	O K
8640 min	Summer	1.830	0.000		0.0	0.8	0.8	0.0	O K
10080 min	Summer	1.830	0.000		0.0	0.7	0.7	0.0	O K
15 min	Winter	1.975	0.145		0.0	1.8	1.8	20.9	0 K
		Storm		Rain	_	Discharge			
		Event	(m	m/hr)	Volume (m³)	Volume	(mins)	
					(111)	(m³)			
	15	min Su	mmer 11	6.472	(m) 0.0	(m³) 20.6	5	25	
		min Su min Su		.6.472 6.493				25 39	
	30		mmer 7		0.0	20.6	Э		
	30 60	min Su	mmer 7 mmer 4	6.493	0.0	20.6	9 5	39	
	30 60 120	min Su min Su	mmer 7 mmer 4 mmer 2	6.493 7.860	0.0 0.0 0.0	20.6 27.9 35.5	9 5 3 <u>-</u>	39 64	
	30 60 120 180	min Su min Su min Su	mmer 7 mmer 4 mmer 2 mmer 2	6.493 7.860 8.933	0.0 0.0 0.0 0.0	20.0 27.9 35.5 43.3	9 5 3 <u>1</u> 1 <u>1</u>	39 64 L20	
	30 60 120 180 240	min Su min Su min Su min Su	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1	6.493 7.860 8.933 1.268	0.0 0.0 0.0 0.0 0.0	20.0 27.9 35.5 43.3 48.1	9 5 3 <u>5</u> 1 <u>5</u> 2 <u>5</u>	39 64 120 158	
	30 60 120 180 240 360	min Sun min Sun min Sun min Sun min Sun	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1	6.493 7.860 8.933 1.268 6.995	0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2	9 5 L 2 2 2	39 64 120 158 190	
	30 60 120 180 240 360 480	min Sun min Sun min Sun min Sun min Sun min Sun	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1	6.493 7.860 8.933 1.268 6.995 2.340	0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0	9 5 1 2 2 5 5	39 64 120 158 190 256	
	30 60 120 180 240 360 480 600	min Sun min Sun min Sun min Sun min Sun min Sun min Sun	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5	0 5 3 2 2 2 5 3 4 2	39 64 120 158 190 256 324	
	30 60 120 180 240 360 480 600 720	min Sun min Sun min Sun min Sun min Sun min Sun min Sun min Sun	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer mmer mmer	26.493 27.860 28.933 21.268 26.995 2.340 9.835 8.241	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4	0 5 3 2 5 5 4 0	39 64 120 158 190 256 324 392	
	30 60 120 180 240 360 480 600 720 960	min Sun min Sun min Sun min Sun min Sun min Sun min Sun min Sun	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9	9 5 1 2 2 5 5 4 7 5	39 64 120 158 190 256 324 392 460	
	30 60 120 180 240 360 480 600 720 960 1440	min Su min Su min Su min Su min Su min Su min Su min Su min Su min Su	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7	9 5 1 2 5 5 5 6 7 8	39 64 120 158 190 256 324 392 460 592	
	30 60 120 180 240 360 480 600 720 960 1440 2160	min Su min Su	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer mmer mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669 4.097	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7 74.3	9 5 1 2 2 5 5 4 7 5 8 8 8 8 1 1 2	39 64 120 158 190 256 324 392 460 592 350	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Su min Su	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer 1 mmer 1 mmer 1 mmer 1 mmer 1 mmer 1 mmer 1	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7 74.3 80.1	9 5 2 2 5 5 4 7 8 8 1 1 1 1 1	39 64 120 158 190 256 324 392 460 592 350 208	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Suu min Suu min Suu min Suu min Suu min Suu min Suu min Suu min Suu min Suu	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer mmer mmer mmer mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7 74.3 80.1 84.1	9 5 2 2 5 5 4 7 8 8 1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	39 64 120 158 190 256 324 392 460 592 350 208 544	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Suu min Suu	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer mmer mmer mmer mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7 74.3 80.1 84.1 89.7	9 5 2 2 5 4 7 8 8 1 1 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 2 5 5 2 2 2 5 5 2	39 64 120 158 190 256 324 392 460 592 350 208 544 0	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min Suu min Suu	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer mmer mmer mmer mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685 1.333	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7 74.3 80.1 84.1 89.7 93.6	9 5 2 2 5 4 7 7 8 8 1 1 2 5 7 5 8 8 8 1 1 2 7 5 4 1 2 7 5 6 4	39 64 120 158 190 256 324 392 460 592 350 208 544 0 0	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Suu min Suu	mmer 7 mmer 4 mmer 2 mmer 2 mmer 1 mmer 1 mmer 1 mmer mmer mmer mmer mmer mmer mmer mmer	6.493 7.860 8.933 1.268 6.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685 1.333 1.111	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	20.6 27.9 35.5 43.3 48.1 51.2 56.0 59.5 62.4 64.9 68.7 74.3 80.1 84.1 89.7 93.6 96.4	9 5 2 2 5 4 7 7 8 1 1 2 5 7 5 8 1 1 2 7 5 7 5 7 5	39 64 120 158 190 256 324 392 460 592 350 208 544 0 0 0	

©1982-2016 XP Solutions

39 Cossingt	on Road			Land	at Te	land Wal	1		Page 2
-	Jui Nuau								
Canterbury						, CT5 1E			
Kent CT1 3						Paving D	esign		– Micro
Date 07/05/					gned b	-			Drain
File permea	able paving	g cont	ro	Chec	ked by				DIGITI
Micro Drain	nage			Sour	ce Con	trol 201	6.1		
	Summary c	of Res	ults f	for 10	<u>)0 year</u>	Return	Period	(+20%)	<u> </u>
	Storm	Max	Max	Ma	ax	Max	Max	Max	Status
	Event	Level	Depth	Infilt	ration (Control Σ	Outflow	Volume	
		(m)	(m)	(1,	/s)	(1/s)	(1/s)	(m³)	
3() min Winter	2 025	0 195		0.0	1.8	1.8	28.1	ОК
) min Winter				0.0	1.9	1.9	34.3	ОК
) min Winter				0.0	1.9	1.9	38.1	ΟK
) min Winter				0.0	1.9	1.9	38.1	ОК
) min Winter				0.0	1.9	1.9	36.8	ОК
360) min Winter	2.066	0.236		0.0	1.9	1.9	34.0	ΟK
480) min Winter	2.047	0.217		0.0	1.9	1.9	31.3	ΟK
600) min Winter	2.028	0.198		0.0	1.8	1.8	28.6	ОК
720) min Winter	2.010	0.180		0.0	1.8	1.8	25.9	ΟK
960) min Winter	1.975	0.145		0.0	1.8	1.8	20.9	ΟK
1440) min Winter	1.916	0.086		0.0	1.7	1.7	12.4	O K
2160) min Winter	1.855	0.025		0.0	1.5	1.5	3.6	ΟK
2880) min Winter	1.830	0.000		0.0	1.4	1.4	0.0	O K
4320) min Winter	1.830	0.000		0.0	1.0	1.0	0.0	O K
5760) min Winter	1.830	0.000		0.0	0.8	0.8	0.0	ΟK
7200) min Winter	1.830	0.000		0.0	0.7	0.7	0.0	O K
8640) min Winter	1.830	0.000		0.0	0.6	0.6	0.0	O K
10080) min Winter	1.830	0.000		0.0	0.5	0.5	0.0	ΟK
		Storm Event		Rain mm/hr)	Flooded Volume	Discharge Volume	e Time-P (mins		
						-			
		Event		m/hr)	Volume	Volume (m³)	(mins		
	30 60	Event min Wi min Wi	(n nter 7 nter 4	m/hr)	Volume (m³)	Volume (m ³) 31.	(mins	;)	
	30 60 120	Event min Wi min Wi min Wi	(n nter 7 nter 4 nter 2	nm/hr) 76.493 47.860 28.933	Volume (m³) 0.0	Volume (m ³) 31. 40. 48.	(mins 5 1 9	3 9	
	30 60 120 180	min Wi min Wi min Wi min Wi	(n nter 7 nter 4 nter 2 nter 2	nm/hr) 76.493 17.860 28.933 21.268	Volume (m ³) 0.0 0.0 0.0 0.0	Volume (m ³) 31. 40. 48. 54.	(mins 5 1 9 2	39 64 120 174	
	30 60 120 180 240	min Wi min Wi min Wi min Wi min Wi	(n nter 7 nter 4 nter 2 nter 2 nter 1	mm/hr) 76.493 47.860 28.933 21.268 26.995	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 31. 40. 48. 54. 57.	(mins 5 1 9 2 7	39 64 120 174 202	
	30 60 120 180 240 360	min Wi min Wi min Wi min Wi min Wi min Wi	(n nter 7 nter 4 nter 2 nter 2 nter 1 nter 1	nm/hr) 76.493 17.860 28.933 21.268 .6.995 .2.340	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 31. 40. 48. 54. 57. 63.	(mins 5 1 9 2 7 1	39 64 120 174 202 276	
	30 60 120 180 240 360 480	min Wi min Wi min Wi min Wi min Wi min Wi min Wi	(m nter 7 nter 4 nter 2 nter 2 nter 1 nter 1 nter 1 nter	nm/hr) 76.493 17.860 28.933 21.268 26.995 2.340 9.835	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m³) 31. 40. 48. 54. 57. 63. 67.	(mins 5 1 9 2 7 1 1	<pre>39 64 120 174 202 276 352</pre>	
	30 60 120 180 240 360 480 600	min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	(m nter 7 nter 2 nter 2 nter 1 nter 1 nter 1 nter nter	Am/hr) 76.493 7.860 28.933 21.268 6.995 2.340 9.835 8.241	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m³) 31. 40. 48. 54. 57. 63. 67. 70.	(mins 5 1 9 2 7 1 1 3	39 64 120 174 202 276 352 426	
	30 60 120 180 240 360 480 600 720	min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter nter nter	mm/hr) 76.493 17.860 28.933 21.268 6.995 .2.340 9.835 8.241 7.130	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 54. 57. 63. 67. 70. 72.	(mins 5 1 9 2 7 1 1 3 9	39 64 120 174 202 276 352 426 498	
	30 60 120 180 240 360 480 600 720 960	min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter nter nter nter	mm/hr) 76.493 17.860 28.933 21.268 16.995 2.340 9.835 8.241 7.130 5.669	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 54. 57. 63. 67. 70. 72. 77.	(mins 5 1 9 2 7 1 1 3 9 3	<pre>39 64 120 174 202 276 352 426 498 636</pre>	
	30 60 120 180 240 360 480 600 720 960 1440	min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter nter nter nter nter	mm/hr) 76.493 47.860 28.933 21.268 66.995 .2.340 9.835 8.241 7.130 5.669 4.097	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 54. 57. 63. 67. 70. 72. 77. 83.	(mins 5 1 9 2 7 1 1 3 9 3 6	39 64 120 174 202 276 352 426 498 636 896	
	30 60 120 180 240 360 480 600 720 960 1440 2160	min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter 1 nter nter nter nter nter	mm/hr) 76.493 17.860 28.933 21.268 26.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 57. 63. 67. 70. 72. 77. 83. 90.	(mins 5 1 9 2 7 1 1 3 9 3 6 1 1 1	<pre>39 64 120 174 202 276 352 426 498 636 896 232</pre>	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter 1 nter nter nter nter nter nter nter	mm/hr) 76.493 47.860 28.933 21.268 66.995 22.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 57. 63. 67. 70. 72. 77. 83. 90. 94.	(mins 5 1 9 2 7 1 1 3 9 3 6 1 1 1 8	<pre>39 64 120 174 202 276 352 426 498 636 896 232 0</pre>	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 76.493 17.860 28.933 21.268 66.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 57. 63. 67. 70. 72. 77. 83. 90. 94. 101.	(mins 5 1 9 2 7 1 1 3 9 3 6 1 1 1 8 3	<pre>39 64 120 174 202 276 352 426 498 636 896 232 0 0</pre>	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 76.493 47.860 28.933 21.268 66.995 22.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685 1.333	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 57. 63. 67. 70. 72. 77. 83. 90. 94. 101. 105.	(mins 5 1 9 2 7 1 1 3 9 3 6 1 1 1 8 3 8	<pre>39 64 120 174 202 276 352 426 498 636 896 232 0 0 0</pre>	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter 1 nter nter nter nter nter nter nter nter nter	mm/hr) 76.493 47.860 28.933 21.268 66.995 2.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685 1.333 1.111	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 57. 63. 67. 70. 72. 77. 83. 90. 94. 101. 105. 109.	(mins 5 1 9 2 7 1 1 3 9 3 6 1 1 8 3 8 1	<pre>39 64 120 174 202 276 352 426 498 636 896 232 0 0 0 0 0</pre>	
	30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Wi min Wi	(n nter 7 nter 4 nter 2 nter 1 nter 1 nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 76.493 47.860 28.933 21.268 66.995 22.340 9.835 8.241 7.130 5.669 4.097 2.956 2.342 1.685 1.333	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volume (m ³) 31. 40. 48. 57. 63. 67. 70. 72. 77. 83. 90. 94. 101. 105. 109. 111.	(mins 5 1 9 2 7 1 1 3 9 3 6 1 1 8 3 8 1 7	<pre>39 64 120 174 202 276 352 426 498 636 896 232 0 0 0</pre>	

©1982-2016 XP Solutions

RMB Consultants Ltd		Page 3
39 Cossington Road	Land at Island Wall	
Canterbury	Whitstable, CT5 1EE	4
Kent CT1 3HU	Permeable Paving Design	Micco
Date 07/05/17	Designed by RB	
File permeable paving contro	Checked by	Drainage
Micro Drainage	Source Control 2016.1	

<u>Rainfall Details</u>

FSR	Winter Storms Yes	
100	Cv (Summer) 0.750	
England and Wales	Cv (Winter) 0.840	
19.700	Shortest Storm (mins) 15	
0.400	Longest Storm (mins) 10080	
Yes	Climate Change % +20	
	100 England and Wales 19.700 0.400	100 Cv (Summer) 0.750 England and Wales Cv (Winter) 0.840 19.700 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080

<u>Time Area Diagram</u>

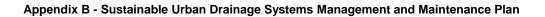
Total Area (ha) 0.106

				(mins) To:			
0 4				20 24		28	0.001

RMB Consultants Ltd		Page 4
39 Cossington Road	Land at Island Wall	
Canterbury	Whitstable, CT5 1EE	<u> </u>
Kent CT1 3HU	Permeable Paving Design	Micco
Date 07/05/17	Designed by RB	
File permeable paving contro	Checked by	Dialiaye
Micro Drainage	Source Control 2016.1	1

<u>Model Details</u>

Storage is Online Cover Level (m) 2.280


Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	8.0
Membrane Percolation (mm/hr)	1000	Length (m)	60.0
Max Percolation (l/s)	133.3	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	1.830	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.034 Discharge Coefficient 0.600 Invert Level (m) 1.430

©1982-2016 XP Solutions

Land adjacent to Lower Island House, Island Wall, Whitstable, CT5 1EE Sustainable Urban Drainage Systems Management and Maintenance Plan

1. Introduction

This Sustainable Urban Drainage Systems (SuDS) Management and Maintenance Plan has been produced for SuDS elements at Land adjacent to Lower Island House, Island Wall, Whitstable, CT5 1EE.

The following SuDS elements are proposed within the development.

- Permeable paving
- Orifice control structures
- Ditches

2. Management

A management company will be set up and will be responsible for the maintenance of the drainage structures.

3. Maintenance

The following maintenance plans will be put in place for each of the SuDS elements present within the development.

Permeable Paving

SUDS Element	Permeable Paving	
Maintenance Issues	Pervious surfaces are susceptible to silt blockage.	
Maintenance Period	Maintenance Task Frequency	
Regular Surface brushing to reduce silt accumulation.		Monthly
	Brushing and jet wash in autumn after leaf fall.	Annually
	Mow grass edges to paving at 35-50mm and remove weeds and leaves.	As required
Occasional tasks	Jetting where silt has accumulated in joints or voids. Replace grit and vibrate surface to lock.	As required
Remedial Work	Where shrinkage or surface damage occurs, uplift paving, remove grit bedding layer and geotextile if present and reinstate to design profile.	As required

Orifice Control Structures

SUDS Element	Orifice Control Structure		
Maintenance Issues	Debris blocking orifice control structure.		
Maintenance Period	Maintenance Task	Frequency	
Regular	Inspect chamber and remove any debris from control device.	Quarterly and following heavy rainfall	
Remedial Work	Repair or replace orifice control device if it is damaged.	As required	

Ditches

SUDS Element	Ditch		
Maintenance Issues	Erosion, siltation and excessive vegetation growth		
Maintenance Period	Maintenance Task Frequency		
Regular	Vegetation removal Tree and hedge trimming	As required	
	Inspect and clear inlets and outlets	Quarterly	
Occasional tasks	Remove leaf accumulation and dead vegetation	Annually in the autumn	
Remedial Work	Repair erosion, level uneven surfaces or damage by re-turfing or seedingAs required		
	Remove silt and spread locally outside design profile and reinstate surface	As required	
	Repair inlets and outlets	As required	

Appendix C - Drainage Strategy Summary

Drainage Strategy Summary

1. Site details	
Site/development name	Land adjacent to Lower Island House
Address including post code	Island Wall Whitstable CT5 1EE
Grid reference	E 610173 N 165998
LPA reference	n/a
Type of application	Outline 🛛 Full 🛛
	Discharge of Conditions Other
Site condition	Greenfield 🛛 Brownfield 🗆

2. Existing drainage		Document/Plan	where information is stated:
Total site area (ha)	0.28		Surface
Impermeable area (ha)	0.00		Water Drainage
Final discharge location	Infiltration		Design
	Watercourse	\boxtimes	
	Sewer		
	Tidal reach/sea		
Greenfield discharge rate	QBAR (I/s)	1.1	Surface
(I/s)	1 in 1 year (I/s)	0.9	Water Drainage
for existing site area	1 in 30 year (l/s)	2.5	Design
	1 in 100 year (l/s)	3.5	
3. Proposed drainage area		Document/Plan	where information is stated:
Impermeable area	Roof	0.050	Surface
(ha)	Highway/road		Water Drainage
	Other paved areas	0.058	Design
	Total	0.108	
Permeable area	Open space	0.172	
(ha)	Other permeable		
	areas		
	Total	0.280	1
Final discharge location	Infiltration		Surface
	Infiltration rate	m/s	Water Drainage
	Watercourse	\boxtimes	Design
	Sewer		
	Tidal reach/sea		
Climate change allowance	20% 🖾 30% [□ 40% □	
included in design			

4. Post-Development Discharge rates, Document/Plan where information is stated: without mitigation			
Developed discharge rates	1 in 1 year	8.5	Surface
(I/s)	1 in 30 year	20.7	Water Drainage
	1 in 100 year	27.0	Design
	1 in 100 year + CC	32.4	
5. Post-Development Discharge rates, Document/Plan where information is stated: with mitigation			
Describe development drain	age strategy in genera	l terms:	Surface
Permeable paving to attenuate runoff with discharge to watercourse. Water Drain Design			Water Drainage Design
(a) No control required, all f	lows infiltrating		
(b) Controlled developed	1 in 1 year	2.0	Surface
discharge rates (I/s)	1 in 30 year	2.0	Water Drainage
	1 in 100 year	2.0	Design
	1 in 100 year + CC	2.0	
6. Discharge Volumes Document/Plan where information is stated:			
	Existing volume (m ³)	Proposed volume (m ³)	Surface Water Drainage
1 in 1 year	9.0	19.0	Design
1 in 30 year	20.9	41.9	
1 in 100 year	28.4	54.4]
1 in 100 year + CC	34.1	65.3]

All information presented above should be contained within the attached Flood Risk Assessment, Drainage Strategy or Statement and be substantiated through plans and appropriate calculations.

Form completed by	Robert Beck
Qualifications	Chartered Civil Engineer
Company	RMB Consultants (Civil Engineering) Ltd
Telephone	01227 472128
Email	robert.beck@rmbconsultants.co.uk
On behalf of (client's details)	Kapra Developments Ltd
Date	07/05/17